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Active control of flow over a sphere at Re = 105, based on the free-stream velocity U∞
and sphere diameter d , is carried out for drag reduction using a time-periodic blowing
and suction from a slit on the sphere surface. The forcing frequency range considered
is one to thirty times the natural vortex-shedding frequency. With the forcing, the
drag on the sphere significantly decreases by nearly 50% for the forcing frequencies
larger than a critical frequency (about 2.85U∞/d). For the forcing frequencies smaller
than this critical frequency, the drag is either nearly the same as, or slightly smaller
than, that without forcing. The critical forcing frequency is found to be closely
associated with the onset of the boundary-layer instability. It is shown from the
surface-pressure measurement, surface oil-flow visualization and near-wall streamwise
velocity measurement that the disturbances from the high-frequency forcing grow
inside the boundary layer and delay the first separation while maintaining laminar
separation, and they grow further along the separated shear layer and high momentum
in the free stream is entrained toward the sphere surface, resulting in the reattachment
of the flow (thus forming a separation bubble above the sphere surface) and the delay
of the main separation. The reverse flow region in the wake is significantly reduced
and the motion in that region also becomes weak owing to the forcing. Finally, the
variation of drag by the present forcing with respect to the Reynolds number is
very similar to that by dimples on the surface, but is different from that by surface
roughness.

1. Introduction
Flow over a sphere is a typical bluff-body flow with many engineering applications.

However, it has not been studied in depth as compared to flow over a circular cylinder
because of the difficulties in the experimental set-up as well as in the computational
approach for studying flow over a sphere. Nevertheless, there have been several
studies on the characteristics of flow over a sphere (Fage 1936; Achenbach 1972;
Achenbach 1974a; Taneda 1978; Kim & Durbin 1988; Sakamoto & Haniu 1990;
Mittal 1999; Kim & Choi 2002; Yun, Choi & Kim 2003). Achenbach (1972) showed
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the existence of four flow regions around the critical Reynolds number (≈ 3.7 × 105)
and explained their characteristics. In the subcritical region (Re � 2 × 105), a laminar
boundary-layer separation occurs around 80◦ from the stagnation point and the
drag coefficient, Cd , is almost constant (≈ 0.5) irrespective of the Reynolds number.
In the critical region (2 × 105 <Re � 3.7 × 105), Cd reduces rapidly to about 0.07
and a separation bubble(s) exists above the sphere surface. At Reynolds numbers
larger than the critical Reynolds number, Cd increases slowly through the super-
and trans-critical regions. Among these flow characteristics, the separation bubble
observed near the critical region has received a special attention because it is closely
associated with the so-called drag-crisis mechanism around the critical region (Fage
1936; Achenbach 1974b; Taneda 1978; Suryanarayana & Prabhu 2000). On the other
hand, Kim & Durbin (1988) and Sakamoto & Haniu (1990) showed that there exist
two distinct characteristic frequencies in flow over a sphere: one is the low frequency
associated with the wake instability (vortex-shedding frequency) and the other is the
high frequency related to the shear-layer instability.

Although several studies have been experimentally and numerically conducted for
understanding the characteristics of flow over a sphere, there have been only a few
works on control of flow over a sphere using passive and active devices (Achenbach
1974b; Bearman & Harvey 1976; Kim & Durbin 1988; Suryanarayana & Meier
1995; Suryanarayana & Prabhu 2000). As for passive devices, Achenbach (1974b)
and Bearman & Harvey (1976) applied surface roughness and dimples on the sphere,
respectively. Both studies achieved maximum drag reduction of nearly 50% in the
sub-critical region, but the drag-reduction pattern by dimples was essentially different
from that by surface roughness. That is, maximum drag reduction by dimples is
maintained over a broad range of Reynolds numbers in the sub-critical region,
whereas surface roughness produces maximum drag reduction only in a very narrow
range of the Reynolds numbers. To the best of our knowledge, however, the detailed
mechanism responsible for drag reduction by dimples or surface roughness has not
been clearly presented yet, although it is believed to be associated with triggering the
boundary-layer instability. This is mainly due to the measurement difficulty near the
sphere surface. For example, the depth of dimples is comparable to the boundary-
layer thickness and their shape is completely three-dimensional. Thus, even the wall
pressure distribution itself is very hard to measure.

A different approach of controlling flow over a sphere was taken by Kim & Durbin
(1988). Noting that there are two distinct frequencies existing in the shear layer and
wake, they applied an acoustic forcing at a wide range of frequencies from the wake-
instability frequency to the shear-layer-instability frequency to flow over a sphere at
much lower Reynolds numbers (Re � 104) than those investigated using the passive
control devices. They showed that the drag is increased significantly by the forcing
and the size of the recirculation region is reduced with stronger motion inside, and
they concluded that triggering the shear-layer instability or wake instability does not
produce any drag reduction.

On the other hand, a popular active control device, called synthetic jet, has been
used by many workers to manipulate many different flows. Among them, a recent
work by Amitay, Smith & Glezer (1998) and Glezer & Amitay (2002) showed that
the application of a high-frequency forcing from a synthetic jet to flow over a circular
cylinder produces a significant drag reduction at sub-critical Reynolds numbers, and
they attributed the mechanism to the ‘virtual aero-shaping’. That is, the interaction
of synthetic jets with an external cross-flow results in the formation of a separation
bubble and thus apparent modification of the surface shape.
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Figure 1. The experimental set-up (dimensions in mm).

In the present study, we perform an active control for drag reduction in flow over
a sphere at sub-critical Reynolds numbers similar to those conducted for passive
controls. We apply a time-periodic forcing (blowing and suction) at a wide range of
forcing frequencies (covering the wake- and shear-layer-instability frequencies) from
a slit located before the separation line. The main objective of the present study
is to investigate how the low- to high-frequency forcing changes the boundary-layer
characteristics before separation and how this change modifies the wake characteristics
and the drag. Another objective is to see if the result obtained by Kim & Durbin
(1988) is still valid at a sub-critical Reynolds number near Re= 105. The effect of the
forcing on the drag and flow field near and behind the sphere is carefully investigated
through the direct drag measurement, surface-pressure and velocity measurement,
and flow visualization.

2. Experimental apparatus
Figure 1 shows the schematic diagram of the present experimental set-up, consisting

of an open-type wind tunnel, sphere, supporter, speaker, load cell and traversing unit.
The cross-section of the wind tunnel after contraction is 600 mm × 600 mm and
the turbulence intensity is lower than 0.5% at the free-stream velocity of 10 m s−1.
The sphere of 150 mm diameter is made of ABS resin. The Reynolds number for
the present experiment is Re = U∞d/ν = 105, where U∞ is the free-stream velocity
(10 m s−1), d the sphere diameter, and ν the kinematic viscosity. An axisymmetric slit
of 0.65 mm (about 0.5◦) width is located on the sphere surface at the angle of φs = 76◦

from the stagnation point (see figure 1), which is upstream of the separation line. A
supporter (19 mm diameter pipe) attached to the sphere base is linked to a speaker
chamber through a latex membrane.
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Figure 2. Temporal variations of the forcing velocity measured at the slit: (a) Std = 1.05
(f = 70 Hz); (b) 1.65 (110Hz); (c) 3.15 (210Hz); (d) 4.95 (330Hz).

The speaker generates a time-periodic blowing and suction of zero-net mass flux
at a specified frequency from the slit. The forcing frequencies (f ) applied are from
10 Hz to 370 Hz in increments of 20 Hz, corresponding to Std ( = f d/U∞) = 0.15 to
5.55 in increments of 0.3. For all the frequencies, the maximum velocity (or forcing
amplitude) at the slit is tuned to be vf,amp = 0.5, 1 and 1.5m s−1 (5, 10 and 15% of the
free-stream velocity, respectively), by adjusting the voltage of the speaker. Figure 2
shows the temporal variations of the forcing velocity (vf ) measured at four different
forcing frequencies using a single hot-wire probe in the case of vf,amp = 1 m s−1. The
amplitude of blowing and suction is successfully kept at 10% of U∞ as shown, even
though low-frequency characteristics exist in vf at a very high forcing frequency
(Std = 4.95). Note that the suction velocity is measured to be positive because the
hot wire is insensitive to the flow direction. We verified the uniformity of the forcing
along the slit by simultaneously measuring the forcing velocity at four different slit
locations.

On the other hand, we attach a trip to the front surface of the sphere as a passive
device for drag reduction by producing turbulent separation. The trip is composed of
two wires of 0.5 mm diameter that locate at φs = 55◦ and 60◦ on the sphere surface,
respectively (a single wire of the same diameter is not sufficient to produce a turbulent
boundary-layer flow before separation no matter where it is located). Then, we apply
the present forcing with and without the trip, respectively, in order to observe different
responses of the flow to forcing.
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Figure 3. Static pressure distribution: �, Re= 105 (present); �, Re= 1.1 × 105 (Fage 1936);
�, Re =1.62 × 105 (Achenbach 1972); —, potential flow.

The drag on the sphere is measured directly using a load cell (Cass BCL-1L). The
magnitude of drag is small (0.25 ∼ 0.50 N) and sensitive to the external interference, so
that a careful measurement is required to minimize the measurement error. We repeat
drag measurements at least ten times for each case and find that the uncertainty
is ± 2.5% (see error bars in figure 4). The surface pressure distribution in the
azimuthal direction (φs) is measured through 23 taps with a scannivalve and a
pressure transducer (MKS 220DD). The resolution of the pressure transducer is
0.001% at full scale of 10 Torr. The pressure distribution along the surface of the
‘basic’ sphere (i.e. without the trip and with the slit closed) is compared with those
from the previous studies in figure 3, showing excellent agreement among the data.
Also, the drag obtained from the integration of the surface pressure is almost the
same as that by the load cell: the difference is within the uncertainty of direct drag
measurement.

The velocity field is measured with an in-house multi-channel hot-wire anemometer
and an I-type hot-wire probe. The hot-wire probe is positioned in the flow by a two-
dimensional traversing unit (resolution is 0.02 mm) controlled automatically using a
computer and a stepping motor. The sensor used is a platinum-10% rhodium wire of
2.5 µm diameter that is soldered to the prongs of the probe. At overheat ratio of 20%,
the cutoff frequency of the sensor is approximately 25 kHz. The voltages from the
anemometer are calibrated at the free stream with a standard two-hole Pitot tube and
a digital manometer. A polynomial of fourth order is used to form a least-squares fit
of the voltage versus the velocity. The uncertainty in measuring the velocity is ± 1%.
Immediately after calibration, the probe is positioned in the flow and the data are
recorded. After finishing measurements at each φs location, the probe is returned to the
free stream and the calibration is checked. When the sensor drifts by more than 1%,
the data are rejected and the calibration process is repeated. The output from the
hot-wire sensor is sampled for 15 s at a rate of 16 kHz and is stored in a computer
using an A/D converter (DT3016).
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Figure 4. Variations of the drag coefficient with respect to the forcing frequency: �, without
trip, vf,amp = 0.05U∞; ◦, without trip, vf,amp =0.1U∞; �, without trip, vf,amp =0.15U∞; �, with
trip, vf,amp = 0.1U∞. The vertical bars denote the measurement uncertainty obtained for
vf,amp = 0.1U∞.

3. Results and discussion
3.1. Drag variation

Figure 4 shows the variations of the drag coefficient with respect to the forcing
frequency without and with the trip for three different forcing amplitudes of
vf,amp = 0.05, 0.1 and 0.15U∞. Here, the drag coefficient is normalized by that of
the basic sphere and Std = 0 corresponds to the case of no forcing. Also shown in
this figure is the uncertainty in measuring drag. The uncertainty is ±2.5% and is
far smaller than the amount of drag reduction by the present forcing. The drag
coefficient measured on the basic sphere (CDbasic) at Re = 105 is 0.51, which is in
good agreement with the result of Achenbach (1972). It is shown in figure 4 that the
drag variation is nearly insensitive to the forcing amplitude, at least in the range of
0.05 � vf,amp/U∞ � 0.15 (the reason for this will be given in § 3.3). In the following,
therefore, the results obtained for vf,amp = 0.1U∞ are discussed.

Without the trip, the drag at Std = 0 decreases by about 5%, indicating that the
flow is a little affected by the slit itself. With the forcing, the drag abruptly decreases
by about 50% at a critical forcing frequency of Stc (= fcd/U∞) = 2.85 and becomes
nearly constant for Std >Stc. For Std <Stc, the drag is either nearly the same as, or
slightly smaller than, that without forcing. On the other hand, the drag is reduced
by 30% by the trip itself (Std = 0), but the forcing does not reduce the drag further.
Strikingly, the amount of drag reduction from the forcing in the absence of trip is
larger than that from the forcing in the presence of trip. The reason for this will be
explained in § 3.2.
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Figure 5. Static-pressure distribution on the sphere surface with the forcing frequency.

Figure 5 shows the surface-pressure distribution for different forcing frequencies in
the absence of trip, together with those for the basic sphere, for the sphere in the
presence of trip (slit closed, with trip and no forcing) and for the potential flow. The
form drag exerted on the sphere is determined by integrating the pressure coefficient
along the azimuthal angle:

CDp
=

∫ π

0

cp sin 2φs dφs. (1)

For Std <Stc = 2.85, the pressure distributions are similar to that on the basic sphere
except near φs = 70◦ where the contribution to the drag is small, indicating negligible
or small drag reduction at these forcing frequencies. On the other hand, for Std > Stc,
the surface pressures at φs < 135◦ are nearly the same as or similar to the inviscid
pressure and the pressures at φs � 135◦ are much larger than those on the basic
sphere, indicating that a significant amount of drag reduction should occur at these
high forcing frequencies. The pressure on the tripped sphere is close to that of the
high-frequency forcing at φs < 90◦, but becomes close to that on the basic sphere at
φs > 120◦, confirming less drag reduction by the trip than by the forcing at Std >Stc.

It should be mentioned here that there exists a plateau in the pressure curve around
φs = 110◦ for the high-frequency forcing cases (Std > 2.85). As shown in figure 6, this
pressure pattern is very similar to that observed in the unforced flow at the critical
Reynolds number where the drag coefficient decreases very rapidly and a separation
bubble exists above the sphere surface (Fage 1936; Achenbach 1974b; Taneda 1978;
Suryanarayana & Meier 1995), suggesting an important clue to the present drag-
reduction mechanism by the present high-frequency forcing. Also, we observed an
asymmetric distribution of the surface pressures measured at four different spanwise
angles for the high-frequency forcing case. The flow asymmetry was also found by
Taneda (1978) and Suryanarayana & Prabhu (2000) at the critical Reynolds number
where the separation bubble was observed.
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Figure 6. Static-pressure distributions on the controlled sphere at Re= 105 (present study)
and on the basic sphere in the critical region (Fage 1936; Suryanarayana & Meier 1995).
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Figure 7. Profiles of the mean streamwise velocity (u) above the sphere surface at
φs = 80◦ ∼ 120◦: ◦, basic; �, with trip and no forcing; �, Std = 1.65; �, Std = 4.95. Here,
r denotes the wall-normal distance from the surface.

3.2. Velocity measurement and visualization

Figure 7 shows the profiles of the mean streamwise velocity measured with a hot-wire
probe along the radial direction from the sphere surface at φs = 80◦ ∼ 120◦. For the
case of the basic sphere, a thin boundary-layer flow is formed at φs = 80◦, but the
flow is detached from the wall at φs = 90◦, showing that separation occurs between
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φs = 80◦ and 90◦. In the case of low-frequency forcing (Std = 1.65), the near-wall
velocity gradient at φs = 80◦ is a little larger and the shear-layer thickness after
separation (at 90◦ and 100◦) is smaller than those in the case of the basic sphere,
implying that separation is slightly delayed owing to the low-frequency forcing.

On the other hand, the flow above the tripped sphere at φs = 80◦ ∼ 100◦ represents
the characteristics of a turbulent boundary-layer, i.e. a thick boundary-layer flow, a
fuller mean velocity profile near the wall, broad-band energy spectrum (see below),
etc. The boundary layer begins to separate from the surface at φs = 110◦ and separates
completely at φs = 120◦. In case of the high-frequency forcing (Std =4.95), the flow
maintains laminar boundary-layer characteristics up to φs = 100◦, i.e. a thin boundary
layer and non broadband energy spectrum (see below).

Note that the momentum of the flow very near the wall is still larger in case of
the tripped sphere than in the case of high-frequency forcing (see the velocity profiles
at φs = 100◦ in figure 7), even though the mean velocity away from the wall is more
accelerated in the latter case. Because of this lower mean velocity gradient very near
the wall, the boundary layer in the case of high-frequency forcing separates from the
wall earlier than in the case of the tripped sphere; the boundary layer separates at
φs = 110◦ in the case of high-frequency forcing, as shown in figure 7. However, the
separation region is limited very near the wall because the flow has a high momentum
outside, as mentioned above. Therefore, at φs = 120◦, the flow with high-frequency
forcing has already reattached to the wall, indicating that a separation bubble exists
at 100◦ < φs < 120◦ owing to the forcing.

Figure 8 shows the profiles of the root-mean-square (r.m.s.) streamwise velocity
fluctuations in the radial direction at φs = 80◦ ∼ 120◦. In the cases of the basic sphere
and the low-frequency forcing, urms increases very rapidly in the shear layer after
separation, whereas the profile of urms in the presence of trip develops to that of the
characteristic turbulent boundary-layer flow before separation at φs = 110◦. In the case
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of the high-frequency forcing, urms slowly decreases before separation, i.e. at φs � 100◦,
owing to the mean velocity acceleration there. After first separation (φs = 110◦), urms

increases very rapidly along the separated shear layer, and turbulent-boundary-layer
characteristics develop near the wall after reattachment (φs = 120◦).

At each φs , the streamwise velocity signal at the radial location where urms is
maximum is Fourier-transformed to obtain its energy spectrum. Therefore, before
separation, the spectra are obtained inside the boundary layer for all the cases
investigated, whereas they are obtained in the separating shear layer after separation.
Figure 9 shows the energy spectra of the streamwise velocity at φs = 80◦ ∼ 120◦ for
the cases of the basic and tripped spheres and for the high-frequency forcing case.
For the basic sphere, the energy spectra at φs = 80◦ ∼ 100◦ show the characteristics
of laminar and transitional flows, and a distinct peak at f d/U∞ = 0.18 observed
for φs � 90◦ clearly indicates the vortex-shedding frequency, which agrees well with
the results of previous studies (Achenbach 1974a; Kim & Durbin 1988). In the
presence of the trip, the spectra show the characteristics of turbulent boundary-layer
flow at φs � 80◦, indicating that the boundary-layer flow before separation is fully
turbulent. Therefore, the addition of time-periodic forcing into the boundary layer
in the presence of the trip does not contribute to further drag reduction (figure 4)
because the boundary layer is already turbulent there. For the high-frequency forcing,
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Figure 10. Oil flow pattern on the sphere surface: (a) basic; (b) with trip and no forcing;
(c) Std = 4.95. Here, the flow is from right to left.

the peaks are found at the forcing frequency and its harmonic frequencies. The
boundary-layer flow is more likely to be laminar before separation, but the energy at
intermediate and high frequencies increases very rapidly at φs = 110◦ (after separation)
and the spectrum becomes broadband at 120◦ (after reattachment), which indicates
that fluctuations rapidly increase at all scales along the separated shear layer, resulting
in the reattachment of the flow on the sphere surface.

Achenbach (1974b) indicated that the low drag coefficient at the critical Reynolds
numbers is due to the existence of a separation bubble above the sphere surface. That
is, with a separation bubble, the reattached flow has high momentum near the wall
with large turbulence intensity, which delays the main separation. The phenomenon
observed at the critical Reynolds number is very similar to the present one with
high-frequency forcing, suggesting that large drag reduction achieved for Std > Stc is
essentially associated with the generation of the separation bubble above the sphere
surface.

Figure 10 shows the surface oil flow pattern visualized by coloured oil paint. In
the case of the basic sphere, separation occurs between 80◦ and 90◦, whereas in the
presence of the trip, separation is delayed and occurs at φs =105◦ ∼ 110◦. In the case
of Std =4.95, separation is delayed and occurs at φs =105◦ ∼ 110◦, and then the flow
reattaches to the surface at φs = 110◦ ∼ 115◦, forming a separation bubble there. The
main separation occurs at φs � 130◦. The flow pattern observed here is consistent with
the hot-wire measurement shown in figure 7.

Figure 11 shows the flow visualization using smoke wires located in front of and
immediately after the sphere. Again, it is clear that, with the high-frequency forcing,
the detaching shear layer is attracted to the sphere surface and the size of the
recirculation region is reduced as compared to the cases of the basic and tripped
spheres. We have tried to visualize the separation bubble generated at φs ≈ 110◦ in
the case of high-frequency forcing, but failed because of its small size. The separation
bubble produced by the high-frequency forcing does not seem to be transitory, but
to be stationary. This conjecture arises because the flow patterns observed by several
attempts of smoke-wire visualization have been nearly the same as that shown in
figure 11(c); also, the real-time hot-wire signal inside the separation bubble is quiet
regardless of the forcing frequency.

3.3. Critical forcing frequency

So far, we have shown that the drag on the sphere was reduced by 50% when
the forcing frequency was larger than the critical frequency of Stc = 2.85. This high-
frequency forcing generated a small separation bubble above the sphere surface
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Figure 11. Smoke flow visualization: (a) basic; (b) with trip and no forcing; (c) Std = 4.95.
Here, the flow is from right to left.

at around 110◦ from the stagnation point and delayed the main separation. The
critical forcing frequency (Stc = 2.85) obtained in the present study is very different
from the frequencies corresponding to the wake instability (Std = 0.18) and shear-
layer instability (Std ≈ 10 from Kim & Durbin 1988). Therefore, the critical forcing
frequency should be related to the boundary-layer instability as shown below. Because
the momentum thickness before separation is very thin as compared to the sphere
diameter (i.e. θ/d < 1/1000) and also the instability in a boundary layer containing
two-dimensional curvature (like the boundary layer above the sphere) has not been
studied yet, we simply resort to a boundary-layer flow of the Falkner–Skan class
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Figure 12. Neutral stability curves for the Falkner–Skan class flows (Morgan et al. 1999).

accepting some possible detailed differences in the instability characteristics between
two flows.

Figure 12 shows the neutral stability curves obtained from the linear stability theory
for the Falkner–Skan class flows by Morgan, Rubin & Khosla (1999). The abscissa
in this figure is the Reynolds number based on the displacement thickness and the
ordinate is the non-dimensional frequency of small perturbation. Here, δ∗ is the
displacement thickness, f is the frequency, β (= 2m/(m+1)) is the non-dimensional
pressure gradient, m is an exponential parameter in Falkner–Skan equations (i.e.
U (x) = Cxm). β = 0 corresponds to zero pressure gradient and β = −0.1988 to the
adverse pressure gradient at separation. We measured both δ∗ and β from the mean
streamwise velocity profile in the radial direction and the wall-pressure gradient at
φs = 80◦ (a location immediately before separation), resulting in β ≈ −0.15 and
Reδ∗ ≈ 285. Also, our forcing frequencies of Std =1.65, 2.85 and 4.95 are converted to
be 2πf δ∗/Ue = 0.023, 0.04 and 0.07, plotted with closed symbols in figure 12, where Ue

is the boundary-layer edge velocity. It is clear in this figure that the forcing frequency
of Std =4.95 is within the unstable region, but the forcing frequency of Std = 1.65 is
not. Therefore, we may conclude that the critical forcing frequency of Stc = 2.85 is
directly associated with the boundary-layer instability.

Note, however, that the linear instability analysis by Morgan et al. (1999) is
only valid for small-disturbance amplitudes, but the present forcing amplitudes
are relatively large. Therefore, we apply three different forcing amplitudes of
vf,amp = 0.05, 0.1 and 0.15U∞ at two different forcing frequencies of Std = 1.65 and
3.90 and measure the growth of the energy at the forcing frequency in a short
streamwise distance, for the validity of the argument based on the linear stability.
Figure 13 shows the evolution of energy in the streamwise velocity fluctuations at
the forcing frequency (Std = 1.65 or 3.90) along the streamwise direction for the three
forcing amplitudes, where the energy is obtained at the radial location of maximum
urms for each φs . As shown, the growth of energy in the streamwise direction is
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Figure 13. Evolution of energy in the streamwise velocity fluctuations at the forcing frequency
along the streamwise direction for three different forcing amplitudes: �, vf,amp =0.05U∞
and Std = 3.90; ◦, vf,amp = 0.1U∞ and Std = 3.90; �, vf,amp = 0.15U∞ and Std = 3.90; �,
vf,amp = 0.15U∞ and Std = 1.65.

manifest and the growth rates for three forcing amplitudes are nearly the same in
the case of high-frequency forcing (Std = 3.90), but the energy decays for Std =1.65,
which clearly supports the use of linear instability argument for the existence of the
critical forcing frequency.

It is worth mentioning the study of Kim & Durbin (1988), who applied an acoustic
forcing at various forcing frequencies from the wake-instability frequency to the
shear-layer-instability frequency to the flow over a sphere at Re � 104. They found
that the drag increased for all the forcing frequencies at those Reynolds numbers.
When we convert those Reynolds numbers to Reδ∗ , they are much smaller than
Reδ∗ = 100. At this Reynolds number range (see figure 12), acoustic perturbations
could not trigger the boundary-layer instability, but trigger the wake instability or
the shear-layer instability, resulting in drag increase. Their result is another indication
that the present high-frequency forcing triggers the boundary-layer instability.

Amitay et al. (1998) and Glezer & Amitay (2002) showed that the application of a
high-frequency forcing (Std = 6.1, 2.6 and 1.5, respectively, for Re =31 000, 75 000 and
131 000) from a synthetic jet to flow over a circular cylinder produced a significant
drag reduction, although the lift was increased by the forcing because the actuator
was installed at only one side of the cylinder. They also applied two different forcing
frequencies of Std = 2.6 and 4.5 for Re =75 000 and found that the drag variation was
insensitive to the forcing frequency. These results are similar to what we observed from
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Figure 14. Variations of the drag coefficient owing to active and passive controls as a function
of the Reynolds number: •, present study; · · ·, dimples (golf ball) by Bearman & Harvey (1976);
− − −, roughness (k/d) by Achenbach (1974b).

the high-frequency forcing in the present study. Amitay et al. (1998) and Glezer &
Amitay (2002) explained the mechanism of drag reduction in terms of ‘virtual aero-
shaping.’ That is, their high-frequency forcing induces a local separation bubble above
the cylinder surface, which acts as a ‘virtual surface’ and displaces local streamlines
well outside the undisturbed boundary layer, resulting in rapid decrease in the surface
pressure both upstream and downstream of the forcing location because the potential
flow outside the surface boundary-layer moves faster than the unforced flow. In this
section, however, we suggested a different drag-reduction mechanism based on the
boundary-layer instability.

3.4. Effect of the Reynolds number

Figure 14 shows the variations of the drag coefficient owing to active and passive
controls as a function of the Reynolds number. It is shown in Achenbach (1974b)
that, with surface roughness, the drag coefficient decreases sharply and then increases
rapidly with increasing Reynolds number, showing a local minimum at a critical
Reynolds number (Rec). This critical Reynolds number decreases with increasing
roughness. Also, the drag coefficient at Re > Rec increases more sharply at larger
roughness and approaches 0.4. On the other hand, dimples reduce the drag coefficient,
even at a lower Reynolds number than surface roughness does (Bearman & Harvey
1976). After its decrease by dimples, the drag coefficient remains almost constant at
about 0.25.

In the present study, we change the Reynolds number by changing the free-stream
velocity (U∞ = 6 m s−1 ∼ 20 m s−1). We fix the forcing frequency to be f = 330 Hz
(f d/U∞ = 4.95 at Re = 105) and the amplitude of the blowing and suction to be
1 m s−1 for different Reynolds numbers, because the result is nearly insensitive to the
amplitude and frequency of the forcing once Std >Stc (figure 4). The result of the
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present high-frequency forcing is similar to that by dimples. That is, after its rapid
decrease due to the present forcing, the drag coefficient remains almost constant
at about 0.24. The present result suggests that the mechanism of drag reduction
by dimples may be similar to that by the present high-frequency forcing, i.e. the
generation of a separation bubble, reattachment of the flow and delay of main
separation, although the detailed cause of such changes may not be the same (note
that dimples generate essentially three-dimensional disturbances to the flow).

4. Concluding remarks
In the present study, an active control of flow over a sphere was conducted for

drag reduction using a time-periodic blowing and suction at a sub-critical Reynolds
number of Re = 105. The forcing-frequency range considered was one to thirty times
the natural vortex-shedding frequency. With the periodic blowing and suction, the
drag on the sphere decreased by nearly 50% for forcing frequencies larger than a
critical frequency (about 2.85U∞/d). For forcing frequencies smaller than this critical
frequency, drag was either nearly the same as, or slightly smaller than, that without
forcing.

It was shown from the surface-pressure measurement, visualization and near-wall
velocity measurement that the present high-frequency forcing generates a separation
bubble above the sphere surface and delays the main separation, resulting in a large
drag reduction. That is, at a forcing frequency larger than the critical frequency, the
disturbances grew inside the boundary layer and delayed the first separation from
φs = 82◦ to about 105◦ while maintaining laminar separation. They grew further along
the separated shear layer and high momentum in the free stream was entrained toward
the sphere surface, resulting in the reattachment of the flow (thus forming a separation
bubble above the sphere surface) and the delay of the main separation. On the other
hand, at a low frequency forcing, the disturbances decayed along the streamwise
direction inside the boundary layer. The existence of the critical forcing frequency
was supported by the boundary-layer instability analysis. The reattachment of the
flow on the sphere surface was associated with the instability of the separated shear
layer, where the strong incoming disturbances triggering the shear-layer instability
came from the boundary-layer instability.

We believe that the generation of the separation bubble above the sphere surface
is important in obtaining a large amount of drag reduction, which has also been
observed in the unforced flow at the critical Reynolds number where the drag crisis
occurs. Our belief comes from the fact that reaching a turbulent boundary-layer flow
before separation by the trip produces less drag reduction than that by high-frequency
forcing. Therefore, the present forcing strategy should also work for drag reduction
in flow over a circular cylinder at a high Reynolds number in the sub-critical region.
It was also shown in this paper that the variation of drag reduction by the present
forcing with respect to the Reynolds number is very similar to that by dimples,
suggesting that the mechanism of drag reduction by dimples may be similar to that
by the present forcing.

In our study, we have shown that the initial disturbances from the present two-
dimensional high-frequency forcing grow owing to the boundary-layer instability and
they rapidly grow along the separated shear layer, resulting in the reattachment of the
flow and the delay of the main separation. However, it is known that the separated
shear layer is unstable to three-dimensional disturbances, and also the boundary layer
is receptive to three-dimensional disturbances when the initial disturbance amplitude
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is large enough. Therefore, it would be interesting to know whether or not three-
dimensional disturbances are more effective in reducing drag for flow over a sphere
than the present two-dimensional disturbances. As shown in this study, however,
reaching turbulent boundary layer before separation by the trip did not produce
as much drag reduction as that by the present two-dimensional high-frequency
forcing. Hence, an intensive study is required to draw a firm conclusion about
the effectiveness of three-dimensional disturbances as compared to two-dimensional
disturbances, which is an important study to be carried out in the near future.

This work was supported by the Creative Research Initiatives of the Korean
Ministry of Science and Technology.
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